Skip to main content

Advertisement

Log in

Evolutionary Autopilot Design Approach for UAV Quadrotor by Using GA

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents an off-line design strategy of an intelligent 3D autopilot of Micro-UAV Quadrotor. It consists of hybridization between two fuzzy controllers for the x and y motions and four PID classical controllers for the attitude/altitude motions. Genetic algorithms are used to adapt and optimize the value of the six controllers' parameters to achieve the best performance and decrease the consumed energy. Also, in order to ensure the global optimum control parameters, genetic algorithm named Bi-GA is used to automatically configure the two GAs using for the tuning process. This design strategy can be used to different types of Quadrotor (with cross or X configuration). Initially, in order to get the controller parameters, simulation tests are made on a commercial Quadrotor named AR.Drone V2. Finally, these parameters values are tested in an experiment using the robot operating system. The results of these experimentations confirm the effectiveness of using genetic algorithms in the design of intelligent PID autopilot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  • Ahn YM, Block DJ, Sreenivas RS (2015) Autonomous navigation and localization of a quadrotor in an indoor environment. J Aerosp Inf Syst 12(12):699–709

    Google Scholar 

  • Aloui S, Pags O, Hajjaji AE, Chaari A, Koubaa Y (2011) Improved fuzzy sliding mode control for a class of MIMO nonlinear uncertain and perturbed systems. Appl Soft Comput 11(1):820–826

    Article  Google Scholar 

  • Azar AT, Serrano FE (2018) Fractional order sliding mode pid controller/observer for continuous nonlinear switched systems with pso parameter tuning. In: International conference on advanced machine learning technologies and applications. Springer, pp 13–22

  • Azar AT, Serrano FE, Vaidyanathan S (2018) Proportional integral loop shaping control design with particle swarm optimization tuning. In: Advances in system dynamics and control. IGI Global, pp 24–57

  • Babaei A, Mortazavi M, Moradi M (2011a) Classical and fuzzy-genetic autopilot design for unmanned aerial vehicles. Appl Soft Comput 11(1):365–372

    Article  Google Scholar 

  • Babaei AR, Mortazavi M, Moradi MH (2011b) Fuzzy-genetic autopilot design for nonminimum phase and nonlinear unmanned aerial vehicles. J Aerosp Eng 25(1):1–9

    Article  Google Scholar 

  • Babu V M, Das K, Kumar S (2017) Designing of self tuning pid controller for ar drone quadrotor. In: 2017 18th international conference on advanced robotics (ICAR). IEEE, pp 167–172

  • Beard R (2008) Quadrotor dynamics and control rev 0.1

  • Bijani V, Khosravi A (2018) Robust pid controller design based on h theory and a novel constrained artificial bee colony algorithm. Trans Inst Meas Control 40(1):202–209

    Article  Google Scholar 

  • Bingul Z, Karahan O (2018) Comparison of pid and fopid controllers tuned by pso and abc algorithms for unstable and integrating systems with time delay. Optim Control Appl Methods 39(4):1431–1450

    Article  MathSciNet  MATH  Google Scholar 

  • Blondin M-J, Sanchis J, Sicard P, Herrero J (2018) New optimal controller tuning method for an avr system using a simplified ant colony optimization with a new constrained nelder-mead algorithm. Appl Soft Comput 62:216–229

    Article  Google Scholar 

  • Bodrumlu T, Soylemez M T, Mutlu I (2016) Modelling and control of the qball x4 quadrotor system based on pid and fuzzy logic structure. In: 13th European workshop advanced control and diagnosis

  • Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evolut Comput 25(1):1–54

    Article  Google Scholar 

  • Bošković M, Rapaić M, Jeličić Z (2018) Particle swarm optimization of pid controller under constraints on performance and robustness. Int J Electr Eng Comput 2(1):1–10

    Google Scholar 

  • Bouabdallah S (2007) Design and control of quadrotors with application to autonomous flying. Ecole Polytechnique Federale de Lausanne, Swissland

    Google Scholar 

  • Bouabdallah S, Noth A, Siegwart R (2004) Pid vs lq control techniques applied to an indoor micro quadrotor. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566), vol 3, pp 2451–2456

  • Boubertakh H (2017) Optimal stabilization of a quadrotor uav by a constrained fuzzy control and pso. In: MATEC web of conferences, vol 99. EDP Sciences, p 03001

    Article  Google Scholar 

  • Bouzid Y, Siguerdidjane H, Bestaoui Y, Zareb M (2016) Energy based 3d autopilot for vtol uav under guidance and navigation constraints. J Intell Robot Syst 87:1–12

    Google Scholar 

  • Casana J, Kantner J, Wiewel A, Cothren J (2014) Archaeological aerial thermography: a case study at the chaco-era blue j community, New Mexico. J Archaeol Sci 45:207–219

    Article  Google Scholar 

  • Castillo O, Amador-Angulo L (2018) A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf Sci 460:476–496

    Article  Google Scholar 

  • Chiou JS, Tran HK, Shieh MY, Nguyen TN (2016) Particle swarm optimization algorithm reinforced fuzzy proportional integral derivative for a quadrotor attitude control. Adv Mech Eng 8(9):1687814016668705

    Article  Google Scholar 

  • Chunhua Z, Kovacs MJ (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13(6):693–712

    Article  Google Scholar 

  • Demir BE, Bayir R, Duran F (2016) Real-time trajectory tracking of an unmanned aerial vehicle using a self-tuning fuzzy proportional integral derivative controller. Micro Air Veh 8(4):252–268

    Google Scholar 

  • DJI (2018) https://www.dji.com/. Accessed 12 May 2018

  • Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: International conference on evolutionary programming. Springer, pp 611–616

  • Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evolut Comput 1(1):19–31

    Article  Google Scholar 

  • Engel J, Sturm J, Cremers D (2014) Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot Auton Syst 62(11):1646–1656

    Article  Google Scholar 

  • FAA (2016) FAA aerospace forecast fiscal years 2016–2036. https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FAA_Aerospace_Forecasts_FY_2016-2036.pdf. Accessed 9 June 2018

  • Fairchild C, Harman TL (2016) ROS robotics by example. Packt Publishing, Birmingham

    Google Scholar 

  • Fu C, Olivares-Mendez MA, Suarez-Fernandez R, Campoy P (2014) Monocular visual-inertial slam-based collision avoidance strategy for faibabaei, l-safe uav using fuzzy logic controllers. J Intell Robot Syst 73:513–533

    Article  Google Scholar 

  • Fu C, Sarabakha A, Kayacan E, Wagner C, John R, Garibaldi JM (2016) A comparative study on the control of quadcopter uavs by using singleton and non-singleton fuzzy logic controllers. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1023–1030

  • Gaur M, Chaudhary H, Khatoon S, Singh R (2016) Genetic algorithm based trajectory stabilization of quadrotor. In: 2016 Second international innovative applications of computational intelligence on power, energy and controls with their impact on humanity (CIPECH). IEEE, pp 29–33

  • Ho Y, Pepyne D (2002) Simple explanation of the no-free-lunch theorem and its implications. J Optim Theory Appl 115:549–570

    Article  MathSciNet  MATH  Google Scholar 

  • Ho H, Wong Y, Rad A (2009) Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. Simul Model Pract Theory 17(7):1199–1210

    Article  Google Scholar 

  • Houck CR, Joines J, Kay MG (1995) A genetic algorithm for function optimization: a matlab implementation. Ncsu-ie tr 95(09):1–10

    Google Scholar 

  • Ibarra L, Webb C (2016) Advantages of fuzzy control while dealing with complex/unknown model dynamics: a quadcopter example. In: New applications of artificial intelligence. IntechOpen

  • Jiménez RL, Aguilar AG, De Velasco VLG (2018) Close loop step test used for tuning pid controller by genetic algorithms. Pistas Educ 36(112):81–98

  • Joyce T, Herrmann JM (2018) A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Yang X-S (ed) Nature-inspired algorithms and applied optimization. Springer, pp 27–51

  • Kespry (2018) https://kespry.com. Accessed 12 May 2018

  • Mahtani A (2016) Effective robotics programming with ROS, 3rd edn. Packt Publishing, Birmingham

    Google Scholar 

  • Martinez A, Fernndez E (2013) Learning ROS for robotics programming. Packt Publishing, Birmingham

    Google Scholar 

  • Meyer DE, Lo E, Afshari S, Vaughan A, Rissolo D, Kuester F (2016) Utility of low-cost drones to generate 3d models of archaeological sites from multisensor data. SAA Archaeol Record Mag Soc Am Archaeol 16(2):22–24

    Google Scholar 

  • Mizumoto M (1995) Realization of pid controls by fuzzy control methods. Fuzzy Sets Syst 70(2–3):171–182

    Article  MathSciNet  MATH  Google Scholar 

  • Nath UM, Dey C, Mudi RK (2017) Fuzzy-based auto-tuned imc-pid controller for level control process. In: Mandal J, Dutta P, Mukhopadhyay S (eds) International conference on computational intelligence, communications, and business analytics. Springer, pp 372–381

  • Nath UM, Dey C, Mudi RK (2018) Fuzzy-tuned simc controller for level control loop. In: Bhattacharyya S, Sen S, Dutta M, Biswas P, Chattopadhyay H (eds) Industry interactive innovations in science, engineering and technology. Springer, pp 239–245

  • Nisi K, Nagaraj B, Agalya A (2018) Tuning of a pid controller using evolutionary multi objective optimization methodologies and application to the pulp and paper industry. Int J Mach Learn Cybern 9:1–11

  • Olivares Mendez MA, Mejias L, Campoy P, Mellado-Bataller I, Mondragon I (2012) Uas see-and-avoid using two different approaches of fuzzy control. In: 2012 international conference on unmanned aircraft systems (ICUAS’12)

  • Özbek NS, Önkol M, Efe MÖ (2016) Feedback control strategies for quadrotor-type aerial robots: a survey. Trans Inst Meas Control 38(5):529–554

    Article  Google Scholar 

  • Parrot (2018) https://www.parrot.com/us/. Accessed 12 May 2018

  • Passino KM (2005) Biomimicry for optimization, control, and automation. Springer, Berlin

    MATH  Google Scholar 

  • PwC (2016) Clarity from above pwc global report on the commercial applications of drone technology. https://www.pwc.pl/en/publikacje/2016/clarity-from-above.html. Accessed 9 June 2018

  • Qiao WZ, Mizumoto M (1996) Pid type fuzzy controller and parameters adaptive method. Fuzzy Sets Syst 78(1):23–35

    Article  MathSciNet  MATH  Google Scholar 

  • Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) Ros: an open-source robot operating system. In: ICRA workshop on open source software

  • Remes B, Hensen D, van Tienen F, Wagter CD, van der Horst E, de Croon G (2013) Paparazzi: how to make a swarm of parrot ar drones fly autonomously based on gps. In: International micro air vehicle conference and flight competition

  • Santoso F, Garratt MA, Anavatti SG (2017) State-of-the-art intelligent flight control systems in unmanned aerial vehicles. IEEE Trans Autom Sci Eng 15(2):613–627

    Article  Google Scholar 

  • Shahriari-kahkeshi M, Sheikholeslam F, Zekri M (2013) Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems. ISA Trans. 52(3):342–350

    Article  Google Scholar 

  • Sun X, Cai C, Yang J, Shen X (2015) Route evaluation for unmanned aerial vehicle based on type-2 fuzzy sets. Eng Appl Artif Intell 39:132–145

    Article  Google Scholar 

  • Tomáš K, Vojtěch V, Daniel F, Jan F (2011) AR-Drone as a platform for robotic research and education. Springer, Berlin, pp 172–186

    Google Scholar 

  • Vose MD, Darrell Whitley L (1995) The third workshop on foundations of genetic algorithms: held July 31 through August 2, 1994, in Estes Park, Colorado

  • West JS, Canning GGM, Perryman SA, Kevin K (2017) Novel technologies for the detection of Fusarium head blight disease and airborne inoculum. Trop Plant Pathol 42(3):203–209

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82

    Article  Google Scholar 

  • Yuneec (2018) https://www.yuneec.com/en_GB/home.html. Accessed 12 May 2018

  • Zareb M, Ayad R, Nouibat W (2013) Fuzzy-pid hybrid control system to navigate an autonomous mini-quadrotor. In: 3rd international conference on systems and control, pp 906–913

  • Zulu A, John S (2016) A review of control algorithms for autonomous quadrotors. CoRR, arXiv:abs/1602.02622

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zareb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareb, M., Nouibat, W., Bestaoui, Y. et al. Evolutionary Autopilot Design Approach for UAV Quadrotor by Using GA. Iran J Sci Technol Trans Electr Eng 44, 347–375 (2020). https://doi.org/10.1007/s40998-019-00214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00214-6

Keywords

Navigation